Доказана возможность выращивания клеток в космосе

Новости сегодня - Доказана возможность выращивания клеток в космосе

Ученые Сеченовского Университета подтвердили возможность выращивания биоэквивалентов кожи и других тканей человека в условия космической микрогравитации. Эксперименты проводились на борту Международной космической станции (МКС) в специально спроектированном биореакторе. Технология выращивания клеток в условиях невесомости является частью глобальной программы по подготовке к освоению дальнего космоса – 3D-биопечать и выращивание тканей из собственных клеток космонавтов позволят эффективно восстанавливать организм после травм и болезней, с которыми предстоит столкнуться в долгих межпланетных перелетах.

Клетка в космосе

Человечество задумывалось о дальних космических полетах и колонизации других планет задолго до того, как стал возможным даже запуск первых спутников: в 1634 году немецкий астроном и математик Иоганн Кеплер опубликовал фантастическую повесть о пребывании человека на Луне. Сегодня перспектива космических путешествий более чем реальна — первый пилотируемый полет на Марс может состояться уже в 2029 году.

Среди множества опасностей, которые подстерегают космонавтов в полетах к другим планетам и астероидам — травмы, ожоги, переломы и другие повреждения, в результате которых может понадобиться пересадка тканей или органов. Решать такие проблемы со здоровьем, не отправляя пациента на Землю, ученые Сеченовского Университета Минздрава России предлагают с помощью 3D-биопечати.

Сам по себе процесс 3D-биопечати в условиях микрогравитации не будет значительно отличаться от такового на Земле: биочернила выходят из сопла под давлением, что позволяет формировать те или иные структуры как в лаборатории, так и на борту космического корабля. Однако печать — лишь первый шаг, затем полученный образец ткани предстоит культивировать в биореакторе.

«Длительное культивирование клеток — это всегда вызов хотя бы потому, что принцип устройства механизмов перекачивания жидкости, принцип распределения жидкости внутри контуров биореактора в условиях космического полета совершенно другой. Но обойтись без этого этапа не получится: после того, как мы что-то напечатали на биопринтере, заселенную клетками «заготовку» предстоит еще дорастить в биореакторе», — пояснил научный руководитель Научно-технологического парка биомедицины Сеченовского Университета Петр Тимашев.

Поэтому ученые Сеченовского Университета вместе с научно-производственным предприятием «БиоТехСис» реализуют космическую программу заказчиком, который является РКК «Энергия». Задача, стоящая перед исследователями, заключается в разработке технологии культивирования клеток в условиях микрогравитации.

В условиях невесомости  

«Основная задача проекта — создание биоэквивалента тканей человека в условиях космоса для дальнейших задач в космических полетах. Мы уже знаем, как вырастить кожу, хрящ и некоторые другие ткани на Земле. Теперь надо научиться делать это за ее пределами в условиях микрогравитации», — отметил Петр Тимашев.

Для экспериментов специалисты «БиоТехСис» разработали многоячеечный проточный культиватор «МСК-2». Он относится к капиллярному типу — воспроизводит среду микроциркуляторного русла, где артерии соединяются с венами на клеточном уровне. Сами же клетки выращиваются в коллагеновой «губке», которая имитирует естественную для них микросреду внутри организма. Все это позволяет максимально приблизить процесс выращивания клеток в условиях космоса к естественному. Кроме того, в реакторе располагается несколько контуров циркулирования питательной жидкости — если один из них выйдет из строя, остальные позволят обеспечивать клетки питанием и дальше.

Первый запуск биореактора с клетками состоялся в 2020 году. Всего в рамках программы, которая завершится в 2025 году, запланировано 10 запусков, из которых восемь уже состоялись. Последние образцы вернулись с МКС на Землю этой весной.

Чтобы добиться длительного культивирования клеток, необходимо контролировать температуру, уровень кислорода и другие параметры. На Земле этот процесс давно отработан, однако предстояло адаптировать его для условий космического полета. Поэтому первые два запуска были посвящены проверке работоспособности биореактора на МКС — справится ли оборудование со своими задачами при микрогравитации.

Первые запуски подтвердили, что устройство соответствует всем требованиям безопасности в космическом полете и способно поддерживать физиологические условия для культивирования клеток человека ex vivo. На земной орбите уже побывали фибробласты, хондроциты и стромальные стволовые клетки человека. На борту реактор каждый раз находился в среднем около 20 дней.

«Мы подтвердили, что отправленные в космос клетки способны выжить в биореакторе. В последнем эксперименте мы добились того, чтобы они проникли вглубь материала и сформировали целевой продукт — биоэквивалент кожи человека», — рассказал Петр Тимашев.

Заправка на орбите

Одна из задач, которую предстоит решить в оставшиеся два запуска — научить космонавтов перезаправлять биореактор. В будущем ему предстоит находиться на борту месяцы и годы, поэтому с заменой питательной среды для клеток должен справляться человек без специальных навыков.

Перезаправка биореактора происходит в стерильном перчаточном боксе, чтобы избежать загрязнения культуры клеток. Сама процедура не слишком сложна, но космонавтам нужно будет наловчиться работать с миниатюрными деталями.

«В условиях космического полета любые манипуляции превращаются в отдельный эксперимент. Даже простая перезаправка биореактора», — подчеркнул Петр Тимашев.

На основе полученных к 2025 году результатов будут сформированы задачи для следующей космической программы. В их числе – испытание работы портативных моделей биопринтера в условиях микрогравитации.

Оборудование для 3D-биопечати обычно довольно громоздкое, что может быть критично в небольших космических кораблях. Поэтому ученые предлагают использовать для этих задач наработки, которые легли в основу разработанного в Сеченовском Университете компактного портативного 3D-биопринтера «Биоган». На Земле он будет использоваться для печати тканей, не отходя от постели пациента, прямо в области раны. В космосе же пригодится для любых задач биопечати.

Еще одно направление, для которого в космосе могут понадобиться 3D-биопринтер и биореактор, — производство еды во время долгосрочных миссий в космосе, которые требуют больше материалов, чем вмещает космический корабль. По мнению ученых, проблема обеспечения пищей будущих путешественников в дальний космос является второй важнейшей проблемой после высокого уровня радиации, которую человечеству нужно решить для того, чтобы отправиться к Марсу и другим далеким мирам. Культивируемое мясо доступно уже сегодня, хотя и обходится дороже натурального, но в длительных полетах оно сможет стать источником животного белка.

Ученые доказали возможность выращивания клеток в космосе

Понравилась новость - поделитесь с Друзьями!

Новости партнеров:

Вам могло бы понравиться:

Гостехнадзор ОАТИ проверил готовность более 6,5 тыс. единиц коммунальной техники к зиме Гостехнадзор ОАТИ проверил готовность более 6,5 тыс. единиц коммунальной техники к зиме
В 2023 году число случаев подделки доверенностей и судебных приказов выросло на 12% В 2023 году число случаев подделки доверенностей и судебных приказов выросло на 12%
Caviar выпустил кастомный iPhone 16 ко дню рождения В.В. Путина Caviar выпустил кастомный iPhone 16 ко дню рождения В.В. Путина
Разработан метод повышения чувствительности датчиков Разработан метод повышения чувствительности датчиков

Оставить комментарий

Вы должны Войти, чтобы оставить комментарий.

©2015 - 2024 Актуальные Новости Сегодня. Все права защищены.
При копировании материалов активная гиперссылка на этот сайт ОБЯЗАТЕЛЬНА!